This is joint work with Osamu Iyama. Let A be a finite dimensional algebra over an algebraically closed field. Then the numerical torsion pairs of Baumann-Kamnitzer-Tingley give an equivalence relation on the real Grothendieck group of finitely generated projective A-modules, which is called TF equivalence. By results of Yurikusa and Bruestle-Smith-Treffinger, we have that the g-vector cone of each 2-term presilting complex is a TF equivalence class. To get more TF equivalence classes, we can use canonical decompositions of elements in the (integral) Grothendieck group of finitely generated projectives introduced by Derksen-Fei. We have showed that the cone defined by the canonical decomposition of each element is contained in some single TF equivalence class. Moreover, we have also obtained that, if A is an E-tame algebra, then this cone is precisely a TF equivalence class. In this talk, I will explain these results and some important steps to prove them.
INSTITUT HENRI POINCARÉ
11 rue Pierre et Marie Curie
75231 Paris Cedex 05

HORAIRES
Lundi au vendredi : 8h30 à 18h
Fermé les jours fériés

URL de la page : https://www.ihp.fr/fr/events/sota-asai-tf-equivalence-classes-and-canonical-decompositions-e-tame-algebras&is_pdf=true