Du

Shedule -

Séminaire Bourbaki

Marie-Claude ARNAUD – La démonstration de la conjecture de l'entropie positive d'Herman d'après Berger et Turaev

Institut Henri Poincaré
Amphithéâtre Hermite
11 rue Pierre-et-Marie-Curie, 75005 Paris

À l'ICM en 1998, Michel Herman énonce sa conjecture pour les difféomorphismes du disque qui préservent l'aire : dans tout voisinage de l'identité en topologie $C^\infty$, il existe un difféomorphisme d'entropie métrique positive. En 2017, Berger et Turaev démontrent la conjecture. Je situerai ce résultat parmi d'autres résultats et conjectures et expliquerai les idées essentielles de la démonstration.