Du
Shedule -
Séminaire Bourbaki
Amador Martin-Pizarro — Model theory, differential algebra and functional transcendence , after Freitag, Jaoui, and Moosa
IHP - Bâtiment Borel
Amphithéâtre Charles Hermite
A fundamental problem in the study of algebraic differential equations is determining the possible algebraic relations among different solutions of a given differential equation. Freitag, Jaoui, and Moosa have isolated an essential property, called property D2, in order to show that if a differential equation given by an irreducible differential polynomial of order n is defined over the constants and has property D2, then any number of pairwise distinct solutions together with their derivatives up to order are algebraically independent. The property D2 requires that, given two distinct solutions, there is no non-trivial algebraic dependence between the solutions and their first n-1 derivatives.
The proof of Freitag, Jaoui and Moosa is extremely elegant and short, yet it uses in a clever way fundamental results of the model theory of differentially closed fields of characteristic 0. The goal of this talk is to introduce the model-theoretic tools at the core of their proof, without assuming a deep knowledge in (geometric) model theory (but some familiarity with basic notions in algebraic geometry).