Du
Shedule -
Rencontres de théorie analytique des nombres
Répartition du maximum des sommes partielles des sommes de Kloosterman et des fonctions de trace
IHP - Bâtiment Perrin
Salle Yvette Cauchois
Dans cet exposé, nous étudierons la répartition du maximum des sommes partielles associées aux sommes de Kloosterman, de Birch et, plus généralement, à certaines sommes de fonctions de trace $\ell$-adiques vérifiant des hypothèses adaptées. Kowalski et Sawin ont montré que ces sommes partielles, convenablement normalisées, convergent en loi vers une série de Fourier aléatoire, ce qui permet d’obtenir une première estimation du comportement de leur maximum. Par la suite, Autissier, Bonolis et Lamzouri ont obtenu des estimations fines de la queue de distribution du maximum de ces sommes partielles. L’objectif de cet exposé est d’aller plus loin en obtenant une estimation plus précise, et de montrer que, dans la grande majorité des cas, le maximum est atteint à proximité de la partie imaginaire de la demi-somme.